

Reg. No.:			
			1

Question Paper Code: 90184

B.E./B.Tech. DEGREE EXAMINATIONS, NOVEMBER/DECEMBER 2019 Fourth Semester

EC8452 - ELECTRONIC CIRCUITS - II

(Common to Electronics and Communication Engineering/Electronics and Telecommunication Engineering)
(Regulations 2017)

Time: Three Hours

Maximum: 100 Marks

Answer ALL questions

PART - A

 $(10\times2=20 \text{ Marks})$

- 1. Discuss the advantages of negative feedback in amplifiers.
- 2. A feedback amplifier has an open loop gain of 600 and feedback factor $\beta = 0.01$. Find the closed loop gain with feedback.
- 3. State the Barkhausen criterion for an oscillator.
- 4. If $L_1 = 1$ mH, $L_2 = 2$ mH and C = 0.1 nF, observe the frequency of oscillation for Hartley oscillator.
- 5. Mention two applications of tuned amplifiers.
- 6. Define loaded Q and unloaded Q of tuned circuit.
- 7. Describe a simple clamper circuit.
- 8. Outline the applications of a stable multivibrator.
- 9. Which power amplifier gives minimum distortion? Why?
- 10. List the applications of MOSFET power amplifier.

PART – B

 $(5\times13=65 \text{ Marks})$

11. a) Illustrate the current series feedback connection and derive the expressions for gain, $R_{\rm if}$ and $R_{\rm of}$.

(OR)

b) i) Build the circuit diagram of voltage shunt feedback amplifier.

(5)

ii) Derive the expressions for $R_{\rm if}\,,\,\,R_{\rm of}$, current and voltage gain.

(8)

12.	a)	Explain the operation of Wien bridge oscillator with a neat circuit diagram and derive the expression of frequency of oscillation.	(13)
		(OR)	
	b)	i) Explain the operation of Colpitts oscillator and derive the expression of its frequency of oscillation.	(10)
		ii) If C_1 and C_2 are 200 PF and 50 PF respectively. Calculate the value of inductance for producing oscillations at 1 MHz in the Colpitts oscillator	
		circuit.	(3)
13.	a)	Draw the single tuned amplifier and explain the frequency response. Derive the expression for its gain and cutoff frequency.	(13)
		(OR)	
	b)	Conclude the following with neat circuit diagram:	
		i) Hazeltine neutralization.	(7)
		ii) Neutrodyne neutralization.	(6)
14.	a)	i) Classify the various types of diode clippers.	(6)
		ii) For a transistor switching circuit predict the collector current response and other parameters for the input of pulse waveform.	(7)
		(OR)	
	b)	With neat circuit diagram and suitable wave forms, explain the operation of a Collector coupled transistor Astable Multivibrator.	(13)
15.	a)	i) Explain the operation of the transformer coupled class A audio power amplifier.	(7)
		ii) Explain the terms conversion efficiency and maximum value of efficiency used in audio power amplifiers.	(6)
		(OR)	
	b)	Describe the operation of class C amplifier and derive its efficiency.	(13)
		$PART - C (1 \times 15 = 15 Ma)$	rks)
16.	a)	Identify the working principle of RC phase shift oscillator circuit diagram, also derive the expression for frequency of oscillation and condition for sustained	
		oscillation.	(15)
		(OR)	
d.	b)	Examine the working of Miller and Pierce crystal oscillators with neat circuit diagrams. Compare them and comment on their features.	(15)
	4.4		